Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina, Benoit Steiner

=72 USC University of
W Southern California

O\ Meta Al

1 Introduction
Integer Linear Programs (ILP)

3 Contrastive Learning for LNS (CL-LNS)

LNS iterations

Large Neighborhood Search (LNS)
A metaheuristic that could solve large-scale combinatorial optimiza-

ILP instances for training

T

min c'x tions efficiently. - Collect training data Training
: . : : : oreach 141l e = = = = : . : : :
St Ax < b The Destroy step requires heuristic designs where machine learning instance [Find an initial Solve the Local Positive examples: | Network Ar.chltecture. Bipartite .Graph x — Embedding layers .%
= | R | _
0 117 can offer helpful guidance. solution Branching ILP | Optimal and sub-optimal : Lpdate the Graph attentlpn ne.twork (GAT) with two. rounds of message passing
x €101} | neighborhoods obtained fincumpent solution — MLP — Sigmoid — |0, 1] score per variable 7(x).

from Local Branching

with the optimal
o e e e o o = J

1

Loss Function: InfoNCE Loss (6: network parameters; D: training

IR, IO|IOCO|IOC|KF|O|kKF
= 1 O | =R [O|RR|O|O| M=

Real-World Applications _ o _ _ ' - ————————— neighborhood
a7 ‘ Initialize ‘ 1. Find an initial solution via any Supervised contrastive Negative examples: : dataset; 7: temperature parameter)°
" method learning to predict add 1o | 1 Ineffective neighborhoods exp alr -
good neighborhoods . data:et obtained by perturbing | L(0) = Z Z l()g ((z)/)
the optimal one I (.S S) eD ‘ pos s a ' ESneqU{al eXp((:B)/T)
_ .\ /A‘\’z‘}\"i J o yOposirOneg pos
Destroy 2. Select a subset of k variables 3::, S |
and unassign them. TS\ ;A‘(| Testlng | .
I e Use the learned policy to predict scores for variables and greedily
choose the top £.
Repair 3. Reoptimize selected variables Training and data collection overview: For each ILP instance for training, we run several LNS iterations with e Adaptively adjust neighborhood size k.

while keeping all other variable
assignments frozen

LB. In each 1teration, we collect both positive and negative neighborhood samples and add them to the training
dataset, which 1s used in downstream supervised contrastive learning for neighborhood selections.

2 Background 3 Related Work 4 Empirical Evaluation

Local Branching (LLB) ML-Guided LNS for ILPs
A heuristic that models the problem of finding the optimal

Energy Optimization

Scientific Discovery

Experimental Setup

heet to dest * Decomposition-based LNS [3]: First ML-guided Benchmark:
roy. . . e
SUDSCL 1O Aesloy | / | LNS work that uses both reinforcement learning (RL) Basehne‘s. | | o 3
Given the current best solution x” to the ILP, it adds an extra and imitation learning (IL) to learn a decomposition- BnB: using SCIP as the solver; RANDOM: LNS with a randomized destroy heuristic; Small Instances (for training and testing) Large Instances (for testing only)
constraint to find the optimal % variables to reoptimize that _ T - RT .- Name MVC-S MIS-S ~ CA-S SC-S MVC-L MIS-L CA-L SC-L
lead 1o th Ny b . P based LNS. LB-RELAX [1]; IL-LNS [4]; RL-LNS [5]. #Variables 1,000 6,000 4,000 4,000 2,000 12,000 8,000 8,000
cad [0 the most improvement. RTINS (5] th . - - #Constraints | 65,100 23977 2,675 5000 | 135,100 48,027 5353 5,000
° - . the state-ol-the-art approach.
. T o] PP Results
- - IL-LNS [4]: the state-of-the-art IL h that imi
o JL- . the state-of-the-ar approach that 1mi-
S.t. Ax<Db B PP — BnB —— RANDOM LB-RELAX —— IL-INS —— RL-INS —— CL-LNS —— BnB —— RANDOM LB-RELAX ~ —— IL-LNS —— RL-LNS —— CL-LNS
B " tates ' ~____ 107 107 — 1.0 1.0 1.0 1.0
x € 10,1} LB Variants in LNS for ILPs £8 0.8 £S0s f———"" | 2808 £S0s
o , o)< k. . o 6 1077 G — o, G g-2 E Vi 0.6 i—é V0.6 E V0.6 E V0.6
Z’“%:O Ti T Zmi:l (I —zi) <k e ML-tuned LB [2]: Use ML to tune the time limit and E £ £ ’ = 5504 5504 5504 5504
. . neighborhood size for LB. i . . i $Eo2 | EEoz SEo2 EEo2
LB 1s slow to solve but could be useful for data collection S - 100\ = s “ 0.0 " 0.0 0.0l ‘Lo.o
' 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 1000 2000 3000

for learning.

Bipartite Graph Representation for ILPs

e Two sets of nodes: AR
. onstrain oaes
variables and con- Variable Nodes
straints.

 An edge between a
variable and a con-
straint 1f the wvariable
appears 1n the con-
straint.

e [B-RELAX [1]: Use the LP relaxation of LB to se-
lect variables to destroy.

References

[1]
2]
[3]
[4]
[S]

Taoan Huang et al. Local branching relaxation heuristics for integer linear pro-
grams. In CPAIOR, 2023.

Defeng Liu, Matteo Fischetti, and Andrea Lodi.
branching. In AAAI, 2022.

Jialin Song et al. A general large neighborhood search framework for solving
integer linear programs. NeurlPS§, 2020.

Nicolas Sonnerat et al. Learning a large neighborhood search algorithm for
mixed integer programs. arXiv preprint arXiv:2107.10201, 2021.

Yaoxin Wu et al. Learning large neighborhood search policy for integer program-
ming. NeurlPS, 2021.

Learning to search in local

[
o
o

Primal Gap

[
o
N

Runtime in Seconds

\

1000

2000

3000

Runtime in Seconds

|
o
L

l—l
o
N

Primal Gap

Runtime in Seconds

(a) MVC-S (left) and MVC-L (right).

S —

<

0+
0

1000

2000 3000

Runtime in Seconds

(c) CA-S (left) and CA-L (right).

Runtime in Seconds Runtime in Seconds

(b) MIS-S (left) and MIS-L (right).

10_1 10—1_
O Q.
[(v] ((v]
) @) T —
I I
o) o

10 \ 10-2

0 1000 2000 3000 0 1000 2000 3000

Runtime in Seconds

(d) SC-S (left) and SC-L (right).

Runtime in Seconds

The primal gap as a function of runtime, averaged over 100 instances. The primal gap 1s
the normalized difference between the objective value and a best known objective.

Runtime in Seconds Runtime in Seconds

(a) MVC-S (left) and MVC-L (right).

1.0; 1.0
e X
2308 £80.8]
Q » O} -
+ VI 0.6 + VI 0.6
2 Q / z o

© ©

© O 0.4] ©c0O04
2 2
> :: >
5 g 0.2' Sg 0.2' J
o o

0.01: . . . 0.0 . . —

0 1000 2000 3000 0 1000 2000 3000

Runtime in Seconds Runtime in Seconds

(c) CA-S (left) and CA-L (right).

=
o

Survival Rate with
Primal Gap = 1.00%
© o o o o©
=~

o

Runtime in Seconds

Runtime in Seconds

(b) MIS-S (left) and MIS-L (right).

S 00

N

[=—

0

1000 2000

3000

Runtime in Seconds

lO

O‘iCO

Survival Rate with
Primal Gap < 1.00%
©c o o o ©
.l‘:.

C)

I\J

7

1000 2000 3000
Runtime in Seconds

(d) SC-S (lett) and SC-L (right).

The survival rate (the fraction of instances with primal gaps below 1.00%) as a function

of runtime over 100 1nstances.

