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1 Introduction
Integer Linear Programs (ILP)

3 Contrastive Learning for LNS (CL-LNS)

LNS iterations

Large Neighborhood Search (LNS)
A metaheuristic that could solve large-scale combinatorial optimiza-

ILP instances for training
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Real-World Applications _ o _ _ ' - ————————— neighborhood
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and unassign them. TS\ ;A‘( | Testlng | .
I e Use the learned policy to predict scores for variables and greedily
choose the top £.
Repair 3. Reoptimize selected variables Training and data collection overview: For each ILP instance for training, we run several LNS iterations with e Adaptively adjust neighborhood size k.

while keeping all other variable
assignments frozen

LB. In each 1teration, we collect both positive and negative neighborhood samples and add them to the training
dataset, which 1s used in downstream supervised contrastive learning for neighborhood selections.

2 Background 3 Related Work 4 Empirical Evaluation

Local Branching (LLB) ML-Guided LNS for ILPs
A heuristic that models the problem of finding the optimal

Energy Optimization

Scientific Discovery

Experimental Setup
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for learning.

Bipartite Graph Representation for ILPs

e Two sets of nodes: AR
. onstrain oaes
variables and con- Variable Nodes
straints.

 An edge between a
variable and a con-
straint 1f the wvariable
appears 1n the con-
straint.

e [ B-RELAX [1]: Use the LP relaxation of LB to se-
lect variables to destroy.
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Learning to search in local

[
o
o

Primal Gap

[
o
N

Runtime in Seconds

\

1000

2000

3000

Runtime in Seconds

|
o
L

l—l
o
N

Primal Gap

Runtime in Seconds

(a) MVC-S (left) and MVC-L (right).
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(c) CA-S (left) and CA-L (right).
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(b) MIS-S (left) and MIS-L (right).
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(d) SC-S (left) and SC-L (right).
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The primal gap as a function of runtime, averaged over 100 instances. The primal gap 1s
the normalized difference between the objective value and a best known objective.
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(a) MVC-S (left) and MVC-L (right).
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(c) CA-S (left) and CA-L (right).
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(b) MIS-S (left) and MIS-L (right).
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(d) SC-S (lett) and SC-L (right).

The survival rate (the fraction of instances with primal gaps below 1.00%) as a function

of runtime over 100 1nstances.



