Machine Learning-Guided Search Algorithms for Multi-Agent Path Finding by Leveraging Domain Heuristics

Taoan Huang, University of Southern California (Joint work with Jiaoyang Li, Bistra Dilkina and Sven Koenig)

1 Multi-Agent Path Finding (MAPF) and Our Contribution

We leverage domain heuristics and machine learning to improve different search algorithms for MAPF:

- **Optimal algorithms**
 - Conflict-based search: A complete tree search
 - Learn to branch on conflicts by imitating an agent dependency heuristics

- **Bounded-suboptimal algorithms**
 - ECBS: A bounded suboptimal version of CBS
 - Learn to improve node selection with imitation and curriculum learning based on a distance-to-goal heuristic

- **Unbounded-suboptimal algorithms**
 - Large Neighborhood Search for MAPF
 - Learn a destroy heuristic by leveraging spatial-temporal information provided by hand-crafted heuristics

Input:
- An unweighted undirected graph.
- A set of agents, each with a start location and a goal location.

Output:
- A set of collision-free paths, one for each agent, that minimizes the sum of travel time.

2 ML-Guided Conflict Based Search (CBS)

CBS

An optimal bi-level tree search:
- A tree node has a set of constraints, each prohibits an agent to travel along an edge or be at a vertex at time t
- High-level Search:
 - Pick a node with the minimum cost
 - Branch on a conflict between two agents in its current solution
- Expand the tree by adding two children, each imposing a constraint for an agent resolving that conflict
- Low-level Search: Replan the optimal agents' path w.r.t. the imposed constraints

ML Framework

Learn to rank the conflicts as similarly as possible to the WDG heuristic, without actually computing it

1. Data collection: Run CBS exhaustively with the WDG heuristic
2. Model learning: Imitate the heuristic's decision via learning to rank conflicts

Experimental Results

Train two models for each map
- ML-S: Train on the data collected on the same map
- ML-O: Train on the data collected on the other maps

Improvement over CBSH2 (state-of-the-art CBS):
- Runtime: 10.3% - 64.4% faster
- Tree sizes: 13.0% to 68.2% fewer nodes

Success rates: the fractions of solved instances within time limit

3 ML-Guided Enhanced CBS (ECBS)

ECBS

Bounded-suboptimal version of CBS:
- Find a solution with cost $\leq w \times$ optimal ($w \geq 1$)
- Node selection in ECBS vs CBS

ML Framework

Warm start training with domain heuristic

Learn a policy π_1 for k_1 agents
Learn a policy π_2 for k_2 agents

Curriculum learning: train with increasing agent sizes $k_1 < k_2 < \ldots$

Experimental Results

ECBS+h_i: CBS with domain heuristic h_i
ECBS+ML: Our method
ECBS+ML(ES): Our method with early stopping in curriculum learning
ECBS+ML+: Our method with imitation learning but no curriculum learning

4 ML-Guided Large Neighborhood Search (LNS)

LNS

MAPF-LNS

1. Find an initial solution via a non-optimal MAPF solver.
2. Select a subset of agents.
3. Replan their paths so that they are collision-free with each other and with the paths of the other agents.

Destroy Heuristics

MAPF-LNS uses randomized domain heuristics.

MAPF-LNS (our method) imitates an oracle:
- The oracle samples 20 candidate agent subsets using domain heuristics, replans them exhaustively and chooses the best one
- During testing, we replace the oracle with the learned model which is a lot faster

What is the best we could possibly achieve?

Experimental Results

Speed of improving solutions: We measure the area under the curve (AUC) and compare against MAPF-LNS by taking the ratios (>1 means we are better).
- ML-S and ML-O use models trained on the same map and unseen maps, respectively.
- k is the number of agents.

- **Performance Metrics**
 - **AUC**
 - **Delay (Suboptimality)**
 - **Learned Delay**