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ABSTRACT
Multi-Agent Path Finding (MAPF) is an NP-hard problem that has
important applications for distribution centers, traffic management
and computer games, and it is still difficult for current solvers to
solve large instances optimally. Bounded suboptimal solvers, such
as Enhanced Conflict-Based Search (ECBS) and its variants, are
more efficient than optimal solvers in finding a solution with subop-
timality guarantees. ECBS is a tree search algorithm that expands
the search tree by repeatedly selecting search tree nodes from a
focal list. In this work, we propose to use machine learning (ML)
to learn a node-selection strategy to speed up ECBS. In the first
phase of our framework, we use imitation learning and curriculum
learning to learn node-selection strategies iteratively for different
numbers of agents from training instances. In the second phase, we
deploy the learned models in ECBS and test their solving perfor-
mance on unseen instances drawn from the same distribution as
the training instances. We demonstrate that our solver, ECBS+ML,
shows substantial improvement in terms of the success rates and
runtimes over ECBS on five different types of grid maps from the
MAPF benchmark.
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1 INTRODUCTION
Multi-Agent Path Finding (MAPF) is the problem of finding a set
of conflict-free (that is, collision-free) paths for a team of agents
that moves on a given underlying graph and minimizes the sum
of path costs or the makespan. MAPF has practical applications
in distribution centers [14, 21], traffic management [9] and video
games [22].

Conflict-Based Search (CBS) [27], a bi-level search algorithm,
is one of the leading algorithms for solving MAPF optimally. The
high-level search uses a best-first search on a binary search tree,
called constraint tree (CT), to find a set of constraints to impose
on agents to ensure the feasibility and optimality of the solution.
The low-level search finds a cost-minimal path for each agent that
respects the constraints imposed by the high-level search. MAPF is
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NP-hard to solve optimally [2, 32] and, therefore, optimal solvers,
such as CBS, do not scale to many agents. Enhanced Conflict-Based
Search (ECBS) [3] and its variants [6, 7] are guaranteed to find
solutions whose sums of costs of the conflict-free paths are at most
𝑤 ≥ 1 times the minimum ones, called 𝑤-approximate solutions,
and run faster than CBS. ECBS uses focal searches [23] instead of
best-first searches for both the high-level and the low-level search
to guarantee bounded suboptimality. The high-level search of ECBS
maintains a focal list that contains the subset of CT nodes on the
open list whose costs are at most𝑤 times the current lower bound
on the optimal solution cost. ECBS can select an arbitrary CT node
in the focal list for expansion, but the common practice is to select
one with the minimum 𝑑-value, where the 𝑑-value is a heuristic
component of ECBS that is computed for each CT node when it
is generated. The 𝑑-value of a CT node is an estimate of the effort
required to find a solution in the CT subtree rooted at that CT
node. Typically, the 𝑑-value is a hard-coded function defined to
be the number of conflicts in the agents’ paths of the CT node or
other statistics related to the conflicts. However, such choices for
the 𝑑-value might result in ECBS being not as fast as it could be
since the number of conflicts in the agents’ paths is not directly
correlated with the effort required to find a solution.

Instead of manually defining the 𝑑-values, we borrow tools from
the machine learning literature [4, 24, 25, 28] and propose a novel
data-driven framework for learning node-selection strategies for the
high-level focal search to speed up ECBS. A node-selection strategy
assigns a 𝑑-value to each CT node and always selects a node with
the minimum 𝑑-value in the focal list to expand during the search.
During training, we do not directly learn the 𝑑-values but rather
a ranking function that differentiates CT nodes that have shorter
distances to a leaf node in the CT with a𝑤-approximate solution
from those CT nodes that have longer distances to one. During the
search, the ranking function takes a CT node’s features as input
and calculates a real-valued 𝑑-value. Our goal is to learn a ranking
function such that its d-values allow ECBS to get closer to a desired
solution every time it expands a CT node and, therefore, help it to
find a solution more quickly. In the first phase of our framework,
we fix the underlying graph and learn node-selection strategies
from solving the training instances on that graph where the start
and goal locations of the agents are drawn from a given distribution.
In the first phase, we start with a small number of agents and use
imitation learning [8, 24, 25] to learn a node-selection strategy for
that number of agents. We then continue learning node-selection
strategies for larger and larger numbers of agents. Instead of learn-
ing from scratch, we use curriculum learning [4] to learn more
efficiently by using previously-learned node-selection strategies as
starting points. In the second phase, we use the learned strategies
to solve unseen instances drawn from the same distribution. Our



solver, ECBS+ML, can scale to large instances beyond those that are
solvable by ECBS, the state-of-the-art bounded suboptimal MAPF
algorithm. In experiments, we test our solver on five different types
of grid maps from the MAPF benchmark and show that we sig-
nificantly outperform ECBS in terms of both the success rate (the
fraction of test instances solved within a given runtime limit) and
runtime. We believe that our method is useful for applications in do-
mains where the layouts of the environments, such as warehouses,
road networks and maps in computer games, are fixed while only
the numbers and locations of agents differ.

2 MAPF
Given an undirected unweighted underlying graph 𝐺 = (𝑉 , 𝐸), the
Multi-Agent Path Finding (MAPF) problem is to find a set of conflict-
free paths for a set of agents {𝑎1, . . . , 𝑎𝑘 }. Each agent 𝑎𝑖 has a start
vertex 𝑠𝑖 ∈ 𝑉 and a goal vertex 𝑡𝑖 ∈ 𝑉 . Time is discretized into
time steps, and, at each time step, every agent can either move to
an adjacent vertex or wait at its current vertex in the graph. Two
types of conflicts are considered: i) a vertex conflict ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑣, 𝑡⟩
occurs when agents 𝑎𝑖 and 𝑎 𝑗 are at the same vertex 𝑣 at time
step 𝑡 ; and ii) an edge conflict ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑢, 𝑣, 𝑡⟩ occurs when agents
𝑎𝑖 and 𝑎 𝑗 traverse the same edge (𝑢, 𝑣) ∈ 𝐸 in opposite directions
between time steps 𝑡 and 𝑡 + 1. The cost of agent 𝑎𝑖 is defined as the
number of time steps until it reaches its goal vertex 𝑡𝑖 and remains
there. A conflict-free solution is a set of conflict-free paths that
move all agents from their start vertices to their goal vertices. The
sum of costs of a solution is the sum of all agents’ costs. Given a
suboptimality factor𝑤 ≥ 1, our objective is to find a𝑤-approximate
conflict-free solution, which is a conflict-free solution with a sum
of costs that is at most𝑤 times the minimum sum of costs.

3 BACKGROUD AND RELATEDWORK
In this section, we first introduce CBS and ECBS. Then, we summa-
rize related work on MAPF solvers and machine learning (ML) in
MAPF and branch-and-bound searches.

3.1 CBS
CBS is an optimal bi-level tree search algorithm forMAPF. It records
the following information for each CT node 𝑁 :

(1) The set of constraints imposed so far. There are two types
of constraints: i) a vertex constraint ⟨𝑎𝑖 , 𝑣, 𝑡⟩, corresponding
to a vertex conflict, prohibits agent 𝑎𝑖 from being at vertex
𝑣 at time step 𝑡 ; and ii) an edge constraint ⟨𝑎𝑖 , 𝑢, 𝑣, 𝑡⟩, corre-
sponding to an edge conflict, prohibits agent 𝑎𝑖 from moving
from vertex 𝑢 to vertex 𝑣 between time steps 𝑡 and 𝑡 + 1.

(2) The solution 𝑁Sol of 𝑁 , which consists of a set of individ-
ually cost-minimal paths for all agents that respect the set
of constraints of N. An individually cost-minimal path for
an agent is the cost-minimal path between its start and goal
vertices, assuming it is the only agent in the graph.

(3) The cost 𝑁Cost of 𝑁 , defined as the sum of costs of the solu-
tion of 𝑁 .

(4) The set of conflicts 𝑁Conf in the solution of 𝑁 .
On the high level, CBS starts with a CT node with an empty set of

constraints and grows the CT by always expanding a CT node with
the lowest cost. After choosing a CT node 𝑁 for expansion, CBS

Algorithm 1 ECBS
1: Input: A MAPF instance and suboptimality factor𝑤
2: Generate the root CT node 𝑅 with an initial solution
3: Initialize open list N ← {𝑅}
4: LB← 𝑅LB, and initialize focal list F ← {𝑅}
5: while N is not empty do
6: 𝑁 ← a CT node with the minimum 𝑑-value in F
7: if 𝑁Conf = ∅ then
8: return 𝑁Sol

9: Delete 𝑁 from the open and focal lists
10: if 𝑚𝑖𝑛𝑁 ∈N𝑁LB > LB then
11: LB←𝑚𝑖𝑛𝑁 ∈N𝑁LB
12: F ← {𝑁 ∈ N : 𝑁LB ≤ 𝑤LB}
13: Pick a conflict in 𝑁Conf
14: Generate 2 child CT nodes 𝑁 1 and 𝑁 2 of 𝑁
15: Call low-level search for 𝑁 𝑖 to calculate 𝑁 𝑖

Sol, 𝑁
𝑖
Cost and

𝑁 𝑖
Conf for 𝑖 = 1, 2

16: Add 𝑁 𝑖 to N for 𝑖 = 1, 2
17: Add 𝑁 𝑖 to F if 𝑁 𝑖

Cost ≤ 𝑤LB for 𝑖 = 1, 2
18: return No solution

identifies its set of conflicts. If there is no conflict, CBS terminates
and returns the conflict-free solution. Otherwise, CBS picks one of
the conflicts to resolve and generates two child nodes of𝑁 to the CT
by adding to the set of constraints of 𝑁 , depending on the type of
conflict, an edge or vertex constraint for one of the two conflicting
agents in one of the child nodes and for the other conflicting agent
in the other child node. Then, CBS applies the low-level search to
each child node to replan the path of each affected agent and records
the respective solution and cost. CBS guarantees completeness by
exploring both ways of resolving each conflict and optimality by
performing best-first searches on both of its high and low levels.

3.2 ECBS
ECBS is a bounded-suboptimal version of CBS [3]. Given a subopti-
mality factor𝑤 ≥ 1, ECBS is guaranteed to find a𝑤-approximate
conflict-free solution. Both the high-level and low-level searches of
ECBS use focal searches [23] instead of best-first searches. Consider
a CT node 𝑁 . On the low level, ECBS runs a focal search for each
agent 𝑎𝑖 such that the cost of the path found is at most 𝑤𝑁LB,𝑖 ,
where 𝑁LB,𝑖 is the lower bound on the cost of the individually cost-
minimal path for 𝑎𝑖 that respects the set of constraints of CT node
𝑁 and is computed by the focal search. Let 𝑁LB =

∑𝑘
𝑖=1 𝑁LB,𝑖 . On

the high level, ECBS performs a focal search with a focal list that
contains all CT nodes 𝑁 in N such that 𝑁Cost ≤ 𝑤LB, where N is
the open list and LB = min𝑁 ∈N 𝑁LB. Since LB is a lower bound on
the sum of costs of any conflict-free solution, once a conflict-free
solution is found by always expanding a CT node in the focal list,
it is guaranteed to be a𝑤-approximate conflict-free solution. ECBS
is summarized in Algorithm 1.



3.3 Related Work
A line of research in MAPF focuses on developing optimal solvers.
Leading optimal MAPF solvers include integer linear programming-
based solvers [18, 19] as well as CBS [27] and its variants, such
as Improved CBS [5], CBSH [12] and CBSH2 [20]. Another line
of research focuses on developing bounded-suboptimal A*-based
MAPF solvers, such as Enhanced Partial-Expansion A* (EPEA*)
[11], A* with operator decomposition [29] and M* [31]. ECBS [3] is
the current state-of-the-art bounded-suboptimal MAPF solver for
MAPF. ECBS with the highway heuristic [6] and Improved ECBS
[7] have been proposed to speed up ECBS in environments such as
warehouses. In contrast, our method makes no assumptions about
the underlying graph and works well for different types of graphs.

Our work is one of the first papers that use machine learning
for MAPF. Sartoretti et al. [26] use reinforcement learning to learn
decentralized policies for agents to avoid the cost of centralized
planning. Huang et al. [15] use ML to learn which conflict to resolve
next to speed up CBS. In a non-MAPF context, ML has been use to
speed up search in the context of branch-and-bound tree search.
He et al. [13] use imitation learning to learn node-selection and
node-pruning strategies for solving mixed-integer programs. Song
et al. [28] scale up this approach by progressively increasing the
instance sizes in the form of curriculum learning. Other related
work includes learning to branch [17] and learning to run primal
heuristics [16] in tree search for solving mixed-integer programs.

4 LEARNING NODE-SELECTION STRATEGIES
Ageneric node-selection strategy for ECBS assigns a𝑑-value to each
CT node and always selects a CT node with the minimum 𝑑-value
in the focal list for expansion. The most commonly used node-
selection strategy in previous work uses the number of conflicts
|𝑁Conf | as the 𝑑-value of a CT node 𝑁 . We refer to this strategy
as ℎ1. Barer et al. [3] propose other strategies that use the number
of pairs of agents that have at least one conflict with each other
and the number of agents that have at least one conflict with other
agents as the 𝑑-values. We refer to these two strategies as ℎ2 and
ℎ3, respectively. We implement and experiment with ℎ1, ℎ2 and ℎ3
in Section 5.

Next, we introduce our framework for learning node-selection
strategies for the high-level focal search of ECBS. Our framework
consists of two phases:

(1) Model learning. During learning, we fix the underlying graph
𝐺 = (𝑉 , 𝐸) and the suboptimality factor𝑤 of the instances
and apply the DAgger algorithm [25], an imitation learn-
ing algorithm, and curriculum learning [4] to learn node-
selection strategies for solving instances with different num-
bers of agents on that graph.

(2) ML-guided search. During testing, we draw test instances
from the same distribution as the training instances and use
the learned node-selection strategies in ECBS.

4.1 Model Learning
We solve instances with a fixed underlying graph 𝐺 = (𝑉 , 𝐸) and a
fixed suboptimality factor𝑤 . The first task in our framework is to
learn node-selection strategies for instances with different numbers
of agents. The idea central to our training algorithm is that we start

learning a node-selection strategy by solving easy instances with
a small number of agents and iteratively increasing the number
of agents to learn another strategy based on the previous one. In
particular, we want to learn to solve instances with increasing
difficulty, i.e., with𝑚 different numbers of agents 𝑘1, . . . , 𝑘𝑚 where
𝑘1 < . . . < 𝑘𝑚 . For each 𝑘𝑖 , we learn a node-selection strategy that
assigns 𝜋𝑖 (𝜙 (𝑁 )) to CT node 𝑁 as its 𝑑-value, where 𝜙 (𝑁 ) is the
feature vector of 𝑁 and 𝜋𝑖 is a learned ranking function. Therefore,
a desirable ranking function is one that assigns smaller 𝑑-values to
CT nodes that are closer to a𝑤-approximate conflict-free solution
and larger 𝑑-values to those CT nodes that are farther away from
one.

Our training algorithm is a curriculum learning algorithm, as
shown in Algorithm 2. Algorithm 2 takes {𝑘1, . . . , 𝑘𝑚} and𝑚 sets of
training instances {I1, . . . ,I𝑚} as input and outputs {𝜋1, . . . , 𝜋𝑚}.
Each instance in I𝑖 includes 𝑘𝑖 agents, where the start and goal
vertices of the agents are drawn i.i.d. from a given distribution.
𝜋0 is set to the ranking function 𝜋∗, that corresponds to an ini-
tial node-selection strategy (e.g., node-selection strategy ℎ1, ℎ2
or ℎ3) (line 2). To obtain 𝜋1 for instances with 𝑘1 agents, we use
DAgger(𝜋∗,I1) [25] as a training algorithm that learns a ranking
function from solving the training instances in I1 using 𝜋∗ as a
starting point. To obtain 𝜋𝑖 (for 𝑖 > 1), instead of starting from
𝜋∗ again, we start learning from 𝜋𝑖−1. We obtain 𝜋𝑖 (1 < 𝑖 ≤ 𝑚)
by calling DAgger(𝜋𝑖−1,I𝑖 ), that learns a ranking function using
𝜋𝑖−1 as the ranking function of the initial node-selection strategy
(line 3-4) until a stopping criterion is met (line 5-7) or 𝑖 =𝑚. If the
stopping criterion is met before 𝑖 =𝑚, we terminate training (line 7)
and simply set 𝜋 𝑗 to 𝜋𝑖 for all 𝑖 < 𝑗 ≤ 𝑚 (line 6). If DAgger(𝜋𝑖−1,I𝑖 )
returns 𝜋𝑖−1, then it cannot find a better ranking function than the
initial one. This situation typically occurs at some point in time
during training for hard instances with many agents since only data
collected from solved instances during data collection contributes
to the training data, and, for hard instances, it is difficult to collect
a sufficient amount of training data, which makes it difficult to im-
prove on the initial ranking function. When the training algorithm
observes this situation (line 5), it stops training and uses the last
obtained ranking function for all instances with larger numbers of
agents than the one for which we could not improve the ranking
function.

DAgger(𝜋 (0) ,I), shown in Algorithm 3, is an imitation learning
algorithm. The inputs 𝜋 (0) and I are the ranking function of the
initial node-selection strategy and the set of training instances.
DAgger repeatedly determines a ranking function that makes better
decisions in those situations that were encountered when running
ECBS with previous versions of the ranking function. Initially, the
training data 𝐷 is set to ∅ (line 1). Let 𝑅 be the number of iterations
for which the algorithm runs (line 2). In iteration 𝑗 , it collects
training data by solving the instances inI with the ranking function
𝜋 ( 𝑗−1) obtained in iteration 𝑗 − 1, aggregates it with 𝐷 (line 4) and
learns a new ranking function 𝜋 ( 𝑗) from 𝐷 that minimizes a loss
function over𝐷 (line 5). When collecting training data using 𝜋 ( 𝑗−1)
in ECBS, we set a runtime limit for each instance. We record the
success rate (i.e., the fraction of instances solved within the given
runtime limit) on I (line 6) and the average runtime for the solved
instances in I (line 7). Finally, DAgger returns the ranking function



Algorithm 2 Training Algorithm: Curriculum Learning

1: Input: Training instance sets {I1, . . . ,I𝑚}
2: 𝜋0 ← 𝜋∗

3: for 𝑖 = 1 to𝑚 do
4: 𝜋𝑖 ← DAgger(𝜋𝑖−1,I𝑖 ) ⊲ Call Algorithm 3
5: if 𝜋𝑖 = 𝜋𝑖−1 then ⊲ Stopping criterion met
6: ∀𝑖 < 𝑗 ≤ 𝑚, 𝜋 𝑗 ← 𝜋𝑖
7: break
8: return {𝜋1, . . . , 𝜋𝑚}

Algorithm 3 DAgger(𝜋 (0) ,I)
1: 𝐷 = ∅
2: for 𝑗 = 1 to 𝑅 do
3: for 𝐼 in training instance set I do
4: 𝐷 ← 𝐷 ∪ CollectData(𝐼 , 𝜋 ( 𝑗−1) ) ⊲ Call ECBS
5: 𝜋 ( 𝑗) ← train a ranking function using 𝐷
6: 𝑟 𝑗−1 ← success rate on I using 𝜋 ( 𝑗−1) in ECBS
7: 𝑐 𝑗−1 ← average runtime on solved instances in I using

𝜋 ( 𝑗−1) in ECBS
8: 𝐿 ← argmax0≤𝑙 ′<𝑅{𝑟𝑙 ′}
9: 𝑙 ← an element from argmax𝑙 ′∈𝐿{𝑐𝑙 ′}
10: return 𝜋 (𝑙)

that achieves the highest success rate on the instances in I in all
𝑅 iterations (line 8), breaking ties in favor of the lowest average
runtime for the solved instances (line 7).

We explain in details how we collect data and learn a ranking
function in the following two subsections.

4.1.1 Collecting Data. Given an instance 𝐼 and a ranking function
𝜋 , the subroutine CollectData(𝐼 , 𝜋) for data collection called in
DAgger runs ECBS using the node-selection strategy given by the
ranking function 𝜋 and returns the entire CT T . For each CT node
𝑁 ∈ T , it computes the following atomic features 𝑓1, . . . , 𝑓9:

(1) features related to the conflicts: the number of conflicts
|𝑁Conf | (𝑓1), the number of pairs of agents that have at least
one conflict with each other (𝑓2) and the number of agents
that have at least one conflict with other agents (𝑓3);

(2) features related to 𝑁Cost: 𝑓4 := 𝑁Cost, 𝑓5 := 𝑁Cost
LB , 𝑓6 :=

𝑁Cost − LB, 𝑓7 := 𝑁Cost − 𝑆 and 𝑓8 := 𝑁Cost/𝑆 , where 𝑆

is the sum of costs of the individually cost-minimal paths of
all agents; and

(3) the depth of 𝑁 in the CT (𝑓9).
From these atomic features, we obtain interaction features 𝑓𝑖 𝑓𝑗 (for
𝑖 ≤ 𝑗 ), which are the pairwise products of the atomic features. The
final feature vector 𝜙 (𝑁 ) ∈ R𝑝 (𝑝 = 54) is obtained by concate-
nating all atomic features and interaction features, resulting in the
degree-2 polynomial kernel in the space of atomic features. Fea-
tures 𝑓2 and 𝑓3 can be computed in time 𝑂 ( |𝑁Conf |), and the other
features can be computed in time 𝑂 (1). Therefore, the overall time
complexity for computing all 54 features is 𝑂 ( |𝑁Conf |),

During data collection, we run ECBS until either 𝑇 solutions are
found, the search exceeds the runtime limit or the search terminates.
If the search exceeds the runtime limit without finding any solution,

we return an empty set of training data for instance 𝐼 . Otherwise, for
each CT node 𝑁 , we assign a label 𝑦𝑁 to it based on the minimum
distance 𝑁𝑑 between 𝑁 and any solution found within the subtree
rooted at 𝑁 . We assign 𝑁𝑑 = ∞ if no solution was found within its
subtree. Since we want to assign smaller 𝑑-values to CT nodes that
are closer to a solution, we need to label 𝑁 in a way such that the
closer 𝑁 is to a solution, the smaller 𝑦𝑁 is:

𝑦𝑁 =



0, if 𝑁𝑑 < 10,
1, if 10 ≤ 𝑁𝑑 < 30,
2, if 30 ≤ 𝑁𝑑 < 60,
3, if 60 ≤ 𝑁𝑑 < ∞,
∞, otherwise.

Our labeling scheme allows us to learn a ranking function that
focuses on pairs of CT nodes that have large differences in 𝑁𝑑 and,
different from using 𝑦𝑁 = 𝑁𝑑 , avoids having to rank CT nodes
correctly that are almost equally good or bad, which is irrelevant
for making good node selections.

4.1.2 Learning a Ranking Function. We use a linear ranking func-
tion with parameter𝒘 ∈ R𝑝

𝜋 : R𝑝 → R : 𝜋 (𝜙 (𝑁 )) = 𝒘T𝜙 (𝑁 )

and minimize the loss function

𝐿(𝒘) =
∑
T∈𝐷

𝑙 (𝑦T , 𝑦T ) +
𝐶

2
| |𝒘 | |22

over the training data 𝐷 , where 𝑦T is the ground-truth label vector
of all CT nodes in T , 𝑦T is the vector of predicted values resulting
from applying 𝜋 to the feature vector𝜙 (𝑁 ) of every CT node𝑁 ∈ T ,
𝑙 (·, ·) is a loss function that measures the difference between the
ground truth label vector and the predicted value vector, and𝐶 > 0
is a regularization parameter. The loss function 𝑙 (·, ·) is based on a
weighted pairwise loss. Specifically, we consider the set of ordered
CT node pairs

PT = {(𝑁𝑖 , 𝑁 𝑗 ) ∈ QT : 𝑦𝑁𝑖
> 𝑦𝑁 𝑗

},

where QT is the set of ordered CT node pairs (𝑁𝑖 , 𝑁 𝑗 ) such that
neither 𝑁𝑖 nor 𝑁 𝑗 is an ancestor of the other CT node in T . Re-
stricting the loss function to take into account only pairs in QT
helps avoid the task of learning to rank two CT nodes that will
never be in the focal list at the same time. The weight 𝑤𝑁𝑖 ,𝑁 𝑗

of
each pair (𝑁𝑖 , 𝑁 𝑗 ) ∈ PT is set to 𝑒−(𝑑𝑖+𝑑 𝑗 )/𝑟𝑑max , where 𝑑𝑖 and 𝑑 𝑗
are the depths of 𝑁𝑖 and 𝑁 𝑗 in T respectively, 𝑑max is the depth of
T , and 𝑟 is a damping factor. The weight𝑤𝑁𝑖 ,𝑁 𝑗

can be understood
as the product of the weights of 𝑁𝑖 and 𝑁 𝑗 , where the weight of
𝑁𝑖 is 𝑒−𝑑𝑖/𝑟𝑑max . The loss function 𝑙 (·, ·) is the weighted fraction of
swapped pairs, defined as

𝑙 (𝑦T , 𝑦T ) =
∑
(𝑁𝑖 ,𝑁 𝑗 ) ∈PT :𝜋 (𝜙 (𝑁𝑖 )) ≤𝜋 (𝜙 (𝑁 𝑗 )) 𝑤𝑁𝑖 ,𝑁 𝑗∑

(𝑁𝑖 ,𝑁 𝑗 ) ∈PT 𝑤𝑁𝑖 ,𝑁 𝑗

. (1)

To learn 𝜋 , we use an open-source solver LIBLINEAR [10] that
implements a Support Vector Machine approach that minimizes an
upper bound on the loss, since the loss itself is NP-hard to minimize.



Grid Map Random Warehouse Maze Game City
𝑤 1.1 1.05 1.01 1.005 1.005
𝑚 10 11 9 16 13
𝑘1 75 140 45 80 160
𝑘𝑚 125 240 125 305 400
|𝑉 | 819 5,699 14,818 28,178 47,240

Table 1: Parameters for each grid map. 𝑤 is the suboptimal-
ity factor, 𝑚 is the number of different numbers of agents
we train and test on, 𝑘1 is the number of agents that we
start training on, 𝑘𝑚 is the largest number of agents that
we test on, and |𝑉 | is the number of unblocked cells on the
grid map. 𝑘2, · · · , 𝑘𝑚−1 are evenly distributed on [𝑘1, 𝑘𝑚], i.e.,
𝑘𝑖 = (𝑖 − 1) (𝑘𝑚 − 𝑘1)/(𝑚 − 1) + 𝑘1.

4.2 ML-Guided Search
After learning the ranking functions {𝜋1, . . . , 𝜋𝑚}, we deploy them
in ECBS. Given an instance with 𝑘 agents and the same underlying
graph as used during training, we run ECBS with ranking function
𝜋 𝑗 , where 𝑗 ∈ argmin𝑖∈[𝑚] {|𝑘 − 𝑘𝑖 |}, i.e. the one trained on the
most similar number of agents. When a CT node 𝑁 is generated, we
compute its feature vector 𝜙 (𝑁 ) and set its 𝑑-value to 𝜋 𝑗 (𝜙 (𝑁 )) .
The overall time complexity of computing the𝑑-value is𝑂 ( |𝑁Conf |)
because of the time complexity of computing the features. Even
though the time complexity of computing the 𝑑-value for node-
selection strategy ℎ1 is 𝑂 (1), we will show in experimentally that
ECBS+ML outperforms ECBS with ℎ1 in terms of both the success
rate and the runtime.

4.3 Discussion
Our main motivation to train multiple ranking functions for dif-
ferent numbers of agents is that, as will be shown in Section 5,
the ranking functions learned with DAgger(·, ·) do not generalize
well to instances with different numbers of agents, especially when
those numbers are substantially larger than the one we train on.
There are two reasons for this issue: (1) We are not able to nor-
malize the feature values since we need to compute the 𝑑-value
of a CT node immediately during the search when it is generated;
and (2) different features are important for instances with different
numbers of agents. Therefore, we learn node-selection strategies
specific to the number of agents, and we use curriculum learning
to learn them efficiently.

There are heuristic components in our training algorithm. The
first component is the design of the stopping criterion for curricu-
lum learning (line 5 in Algorithm 2). If we cannot improve on 𝜋𝑖−1
in iteration 𝑖 of the training algorithm, we are not able to improve
on it in subsequent iterations either. The other component is the
criterion for choosing the best ranking function in DAgger. One
could argue that the best ranking function should be chosen based
on the performance on a set of instances for validation drawn from
the same distribution as for training (lines 8-9 in Algorithm 3).
However, this would approximately double the runtime of DAgger
and thus, also the training algorithm if the numbers of instances
for validation and training were the same. Our criterion allows the
training algorithm to select a good ranking function efficiently.

Grid Map Random Warehouse Maze Game City
𝑙1 .0075 .0088 .0092 .0085 .0051

𝑙 ⌊𝑚/2⌋ .0330 .0166 .0192 .0131 .0068
𝑙𝑚 .0653 .0283 .0318 .0204 .0107

Table 2: Loss 𝑙𝑖 ∈ [0, 1] of ranking function 𝜋𝑖 for 𝑘𝑖 agents
evaluated by Equation (1) averaged over all CTs in the train-
ing data.

5 EXPERIMENTAL RESULTS
We now demonstrate the efficiency and effectiveness of ECBS+ML
through extensive experiments. We implement ECBS+ML in C++
and conduct our experiments on 2.4 GHz Intel Core i7 CPUs with
16 GB RAM. During testing, we compare against ECBS with the
node-selection strategies ℎ1, ℎ2 and ℎ3 (ECBS+ℎ1, ECBS+ℎ2 and
ECBS+ℎ3). We also compare against two versions of ECBS+ML, one
that stops early, denoted by ECBS+ML(ES), and the other that uses
only imitation learning, denoted by ECBS+IL. We set the runtime
limit to 5 minutes per instance for running ECBS in both data
collection and testing. The number of solutions 𝑇 collected during
data collection is set to 10. The number of iterations 𝑅 for DAgger
is also set to 10. The damping factor 𝑟 for weight 𝑤𝑁𝑖 ,𝑁 𝑗

is set to
0.3727. 𝑟 is chosen so that a CT node at depth 0.6𝑑max has weight
𝑒−0.6/𝑟 = 0.2. Since we are using a pairwise loss, we suffer from
a quadratic time complexity (𝑂 ( |T |2)) for the loss computation.
Therefore, we record only the first 10,000 CT nodes generated for
each instance during data collection. We use the default values for
all parameters in LIBLINEAR where the regularization parameter
𝐶 is set to 1.

We evaluate ECBS+ML on five grid maps of different sizes and
structures from theMAPF benchmark1 [30], including: (1) a random
map “random-32-32-20”, which is a 32 × 32 grid map with 20%
randomly blocked cells; (2) a warehouse map “warehouse-10-20-
10-2-1”, which is a 163 × 63 grid map with 200 10 × 2 rectangular
obstacles; (3) a maze map “maze-128-128-10”, which is a 128 × 128
grid map with ten-cell-wide corridors; (4) a game map “den520d”,
which is a 257 × 256 grid map from the video game Dragon Age:
Origins; and (5) a city map “Paris_1_256”, which is a 256 × 256
grid map of Paris. For testing, we use the “random” scenarios in
the benchmark, yielding 25 instances for each number of agents
on each grid map. For training, we generate another 25 instances
drawn from the same distribution as the “random” scenarios for
each I𝑖 in the training algorithm. The parameters related to each
grid map are listed in Table 1. 𝑘1 is chosen such that at least one
of ECBS+ℎ𝑖 (i=1,2,3) has a success rate of 88% or higher. We fix
the increment between 𝑘𝑖 and 𝑘𝑖+1, and 𝑘𝑚 is chosen such that
either the success rate of ECBS+ML falls below 20% or all ECBS+ℎ𝑖
(i=1,2,3) have 0% success rates. We fix the suboptimality factor𝑤 ,
following the reasoning in previous work [3], where small𝑤 values
are chosen for large grid maps and vice versa. Our objective is
to obtain a ranking function 𝜋𝑖 for each number of agents 𝑘𝑖 in
{𝑘1, . . . , 𝑘𝑚}. The training loss of the learned ranking functions
is shown in Table 2. It is small. We now test the node-selection

1All data is publicly available at: https://movingai.com/benchmarks/mapf/index.html.

https://movingai.com/benchmarks/mapf/index.html


Figure 1: Success rates within the runtime limit of 5 minutes as a function of the number of agents. For ECBS+ML, ECBS+ML(ES)
and ECBS+IL, the vertical line of the same color indicates the number of agents in the last iteration that a ranking function is
learned in the training algorithm. In the figure for the warehouse map, the graph of ECBS+ℎ1 is hidden entirely by the one of
ECBS+ℎ2.

strategies that correspond to those ranking functions on unseen
instances with 𝑘1, . . . , 𝑘𝑚 agents.

5.1 Success Rate and Runtime
Figure 1 plots the success rates on all grid maps. Overall, ECBS+ML
significantly outperforms the three baselines, ECBS+ℎ1, ECBS+ℎ2
and ECBS+ℎ3, in all grid maps. On the game map, in particular, the
success rates of the baselines drop below 20% when the number
of agents increases to 170, and the baselines could hardly solve
instances with more than 245 agents, while the success rates of
ECBS+ML stay above 76% for up to 245 agents and ECBS+ML can
solve 16% of the instances with 305 agents. Overall, the success
rates of ECBS+ML are 52% to 80% when those of the baselines begin
to drop below 20%. When the success rates of the baselines are
all below 8%, ECBS+ML can still solve instances with 9% to 17%
more agents with success rates around 12% to 20%. To demonstrate
the efficiency of ECBS+ML further, we show the success rates for
different runtime limits in Figure 2. Due to space limits, we show
only one figure for each grid map with a fixed number of agents,
namely the smallest number of agents 𝑘𝑖 where at least one of the
baselines has a success rate below 50%. In these cases, ECBS+ML

has a success rate above 80% and still significantly outperforms the
baselines for shorter runtime limits, e.g., of 1 or 2 minutes.

Figure 3 shows the success rates of ECBS+ML and the baselines
within the runtime limit of 5 minutes as a function of the subopti-
mality factor𝑤 on the randommap for 95 agents. We use ECBS+ML
with the ranking function obtained in the previous experiment that
is trained on 95 agents and 𝑤 = 1.1. To show that the success
rates of ECBS+ML can be improved with curriculum learning, we
use the same training algorithm (Algorithm 2) but, instead of us-
ing a fixed value for 𝑤 and different numbers of agents, we use
a fixed number of agents and give different values of 𝑤 , namely,
𝑤𝑖 ∈ {1.09, 1.08, . . . , 1.05}. We then obtain a ranking function for
each𝑤𝑖 . Figure 3 shows the success rates of the resulting solvers
ECBS+ML(𝑤 ). ECBS+ML(𝑤 ) achieves higher success rates by ap-
plying curriculum learning on different values of𝑤 than ECBS+ML,
which just generalizes the ranking function for 𝑤 = 1.1 to other
values of𝑤 .

5.2 Ablation Analysis
To assess the effect of curriculum learning, we perform two ablation
analyses. First, we experiment with ECBS+ML(ES). ECBS+ML(ES)



Figure 2: Success rates for a fixed number of agents as a function of the runtime limit for each grid map.

Figure 3: Success rates within the runtime limit of 5 min-
utes as a function of the suboptimality factor 𝑤 on the ran-
dom map for 95 agents. The vertical brown line indicates
the value of𝑤 in the last iteration that a ranking function is
learned for ECBS+ML(𝑤 ).

uses the same training algorithm as ECBS+ML except that it stops
training earlier than ECBS+ML. The number of agents in the last
iteration of training in the training algorithm is the one where
the success rate of ECBS+ℎ1 first drops below 60%. The success
rates of ECBS+ML(ES) are shown in Figure 1. ECBS+ML(ES) is
competitive with ECBS+ML and outperforms all baselines on the
random, warehouse and maze maps, but its success rates on the

city and game map drop dramatically beyond the number of agents
that ECBS+ML(ES) stopped training at. The results imply that the
learned node-selection strategy does not generalize well to larger
numbers of agents on some grid maps and curriculum learning
helps to find better strategies in those cases.

Second, we experiment with ECBS+IL. ECBS+IL uses the same
training algorithm as ECBS+ML except that, for each number of
agents, it learns a ranking function starting from the given initial
ranking function without relying on the previously-learned one.We
replace line 4 in the training algorithm with “𝜋𝑖 ← DAgger(𝜋∗,I𝑖 )”
and “𝜋𝑖 = 𝜋𝑖−1” on line 5 with “𝜋𝑖 = 𝜋∗”. The success rates of
ECBS+IL are shown in Figure 1. ECBS+IL outperforms the baselines
but not as significantly as ECBS+ML. The results show another
two advantages of curriculum learning: (1) It enables learning for
one to three more iterations than ECBS+IL by enabling DAgger to
collect more data for training due to being provided with better
node-selection strategies for this purpose; and (2) it obtains better
node-selection strategies based on the previously-learned strategies,
as opposed to ECBS+IL that learns the node-selection strategy from
the given initial ranking function in every iteration.

5.3 Feature Importance
Next, we study the feature importance of the learned ranking func-
tions of ECBS+ML, measured by the permutation feature impor-
tance [1] of each feature, which is the increase in the loss on the
training data after randomly permuting the values of that feature
across all CT nodes for each CT in the training data. In Figure 4,
we plot the normalized permutation feature importance of the top



(a) Permutation feature importance of the learned ranking functions for different numbers of agents on the maze maps.

(b) Permutation feature importance of the learned ranking functions for different grid maps.

Figure 4: Feature importance plots. We restate the definitions of some atomic features here (see Section 4.1.1 for the full list):
𝑓1 is the number of conflicts, 𝑓2 is the number of pairs of agents that have at least one conflict with each other, 𝑓3 is the number
of agents that have at least one conflict with other agents, and 𝑓9 is the depth of the CT node.

12 features of the ranking functions for some numbers of agents
and some grid maps. We first study the important features of the
ranking functions when varying the numbers of agents for a single
grid map , as shown in Figure 4a. We choose the maze map as a
representative example to show that the learned node-selection
strategies change as the number of agents increases. For 45 agents,
the most important features are related to 𝑓1 (the number of con-
flicts), followed by some features related to 𝑓2 (the number of pairs
of agents that have at least one conflict with each other). For both
65 and 85 agents, the top 6 features are those related to 𝑓2, followed
by some features related to 𝑓3 (the number of agents that have at
least one conflict with other agents) for 65 agents and 𝑓1 for 85
agents. For 105 agents, the most important features are related to
𝑓3, followed by some features related to 𝑓1. To show that the set of
important features varies across grid maps, we study the feature
importance of the ranking functions for the random, warehouse,
game and city maps, as shown in Figure 4b. The ranking functions
are for the numbers of agents used in Figure 2. For the random and
warehouse maps, the most important features are related to 𝑓3, and
the feature importance drops after the 4th feature. For the city map,
the most important features include five features related to 𝑓9 (the
depth of the CT node). For the game map, the two most important
features are also related to 𝑓9, followed by some features related to
𝑓3.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed the first ML framework for learning
node-selection strategies for ECBS. We deployed advanced ML
techniques such as imitation learning and curriculum learning. Our
extensive experimental results showed that ECBS+ML substantially
improves on the current state-of-the-art bounded suboptimal MAPF
solvers on different types of grid maps. It is future work to conduct
feature selection to see whether we are still able to achieve good
performance when reducing the feature set. It is also future work
to apply our framework to instances that progressively increase in
difficulty via problem parameters other than the number of agents,
such as the suboptimality factor 𝑤 or the obstacle density of the
grid map.
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