
A Discussion on the Scalability of Heuristic Approximators (Extended Abstract)

Sumedh Pendurkar,1 Taoan Huang, 2 Sven Koenig, 2 Guni Sharon 1

1 Texas A&M University
2 University of Sourthern California

sumedhpendurkar@tamu.edu, taoanhua@usc.edu, skoenig@usc.edu, guni@tamu.edu

Abstract
In this work, we examine a line of recent publications that
propose to use deep neural networks to approximate the goal
distances of states for heuristic search. We present a first step
toward showing that this work suffers from inherent scala-
bility limitations since — under the assumption that P̸=NP
— such approaches require network sizes that scale exponen-
tially in the number of states to achieve the necessary (high)
approximation accuracy.

Introduction
Principal computational problems, such as planning and
scheduling (Wilkins 2014), routing (Toth and Vigo 2002),
and combinatorial optimization (Papadimitriou and Steiglitz
1998), are known to be NP-hard in their general forms.
There are no polynomial-time algorithms known for solv-
ing them. This complexity gap, known as the P vs. NP prob-
lem (Cook 2006), remains one of the biggest open questions
in computer science.

Recognizing the challenges of developing polynomial-
time solvers (or their unattainability), many researchers fo-
cus on reducing the exponential runtime of known solvers
using heuristic functions (Pearl 1984). For example, it is
easy to show that, given a heuristic function that closely
approximates the goal distances of states, the A* algo-
rithm (Hart, Nilsson, and Raphael 1968) can solve NP-
hard search problems with a runtime that is polynomial in
the length of the solution path and the branching factor.
This fact motivates a line of publications (McAleer et al.
2018; Agostinelli et al. 2019, 2021) that proposes methods
for approximating the goal distances of states for heuristic
search using universal function approximators. These meth-
ods achieve state-of-the-art results for the studied domains.
However, we present a first step toward showing that they
suffer from inherent scalability limitations since — under
the assumption that P ̸=NP — they require function approx-
imator sizes that scale exponentially in the number of states
to achieve the necessary (high) approximation accuracy.

Space limitations prevent us from providing the needed
theoretical definitions and proofs. These will be provided in
a future publication. Instead, we present only supporting ex-
perimental results in this paper.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Experiments
In our experiments, we use neural networks as univer-
sal function approximators and determine their smallest
sizes, expressed in the numbers of parameters (namely, their
weights and bias parameters), required to fit fixed-size train-
ing sets. The neural networks are trained to maps states
to their goal distances for instances of given sizes in three
search domains, namely the pancake, travelling salesman
(TSP), and blocks world domain.

Setup
We use artificial neural networks of two different structures
as universal function approximators (Cybenko 1989; Kidger
and Lyons 2020), both using Rectified Linear Unit (ReLU)
activation functions (Nair and Hinton 2010) since they sat-
isfy the properties required by the universal function approx-
imation theorem (Sonoda and Murata 2017). First, we use
two-layer neural networks (that is, neural networks with one
hidden layer). We refer to these networks as fixed-depth net-
works since any number of neurons in the hidden layer is
allowed, but the number of layers is fixed. Second, we use
neural networks with a fixed number of neurons per hidden
layer, but any number of layers is allowed. We refer to these
networks as fixed-width networks. We use residual connec-
tions (He et al. 2016)1 and batch normalization (Ioffe and
Szegedy 2015) to mitigate issues that we observed during
training, such as vanishing gradients.

The number of states increases exponentially in the size
of the instances, that is, the number of pancakes, cities, or
blocks. It is therefore unrealistic to train on all states and
their goal distances. We thus randomly select one million
states and their goal distances (obtained by running an op-
timal search algorithm) for each instance size and use 80
percent of them for training and the remaining 20 percent
for testing. We use the ADAM optimizer (Kingma and Ba
2015) to minimize the mean squared error on the training
set, following (Agostinelli et al. 2019, 2021). ADAM is not
guaranteed to converge to the global minimum. However,
it is widely used in the literature (Agostinelli et al. 2019;
Orseau and Lelis 2021) since it usually results in near opti-
mal solutions. We stop training when a neural network fits

1Residual networks are universal function approximators (Lin
and Jegelka 2018).



Figure 1: The smallest number of parameters (in log scale) required for fixed-depth networks to fit the training set for instances
of increasing sizes. On the x-axis, we have the sizes of the instances for each search domain, namely the number of pancakes,
cities, or blocks. On the y-axis to the left, we have the number of parameters (in log scale). On the y-axis to the right, we
have the training and test errors. The training error thresholds are 0.20, 0.35, and 0.20 for the pancake, TSP, and blocks world
instances, respectively.

Figure 2: The smallest number of parameters (in log scale) required for fixed-width networks to fit the training set for instances
of increasing sizes. On the x-axis, we have the sizes of the instances for each search domain, namely the number of pancakes,
cities, or blocks. On the y-axis, we have the number of parameters (in log scale). The training error thresholds are 0.10, 0.35,
and 0.02 for the pancake, TSP, and blocks world instances, respectively.

the training set, defined as the training error dropping below
a given training error threshold, or after 300 epochs, what-
ever occurs earlier. To mitigate the impact of local minima,
we train each neural network five times and report the low-
est training error. Details will be provided in the full-length
publication of this work.

Results
Figure 1 reports the smallest number of parameters required
for fixed-depth networks to fit the training set for instances
of increasing sizes. For pancake and TSP instances, we see
a linear trend until a certain instance size and then a stagna-
tion around pancake instances of size 12 and TSP instances
of size 7. The test error starts to increase roughly at the point
of stagnation – a common indicator for overfitting, which we
did not prevent in our experiments other than by stopping
training early. One explanation for the increasing test error
is that the training and test sets contain fewer and fewer com-
mon states as the instance size increases since the number of
states increases with the instance size and it thus becomes
more and more unlikely that the same state will be part of
both the training and test sets. Figure 2 shows similar pat-
terns for fixed-width networks although the plots are nois-
ier than those in Figure 1 since adding another layer with n
neurons increases the number of parameters by n2 weights
and n bias parameters, making it more challenging to obtain
smooth graphs. Overall, the smallest number of parameters

is similar for fixed-depth and fixed-width networks at the
point of stagnation, namely about 5 × 105. Overall, our re-
sults suggest that sufficiently accurate heuristic functions for
these NP-hard problems might not have a meaningful under-
lying structure. As a result, the scalability of learning such
heuristic functions might be similar to that of constructing a
naive lookup table, which grows exponentially with the in-
stance size.

Summary
We empirically investigated the unscalability of heuristic ap-
proximators for NP-hard search problems. Our experimen-
tal results provide a first indication that heuristic search al-
gorithms that rely on function approximators to fit the goal
distances for NP-hard search problems are unscalable. The
experimental results for blocksworld instances, though, need
to get investigated further (for example, for even larger in-
stance sizes) since the test error remained small for the in-
stance sizes used in Figure 1.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Deep Reinforcement
Learning and Search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; Shmakov, A.; McAleer, S.; Fox, R.; and
Baldi, P. 2021. A* Search Without Expansions: Learning



Heuristic Functions with Deep Q-Networks. arXiv preprint
arXiv:2102.04518.
Cook, S. 2006. The P versus NP Problem. The Millennium
Prize Problems, 87–104.
Cybenko, G. 1989. Approximation by Superpositions of a
Sigmoidal Function. Mathematics of Control, Signals and
Systems, 2(4): 303–314.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 770–778.
Ioffe, S.; and Szegedy, C. 2015. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In International Conference on Machine
Learning, 448–456.
Kidger, P.; and Lyons, T. 2020. Universal Approximation
with Deep Narrow Networks. In Conference on Learning
Theory, 2306–2327.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representations.
Lin, H.; and Jegelka, S. 2018. Resnet with One-Neuron Hid-
den Layers is a Universal Approximator. Advances in Neural
Information Processing Systems, 6172–6181.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2018. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.
Nair, V.; and Hinton, G. E. 2010. Rectified Linear Units
Improve Restricted Boltzmann Machines. In International
Conference on Machine Learning, 807—-814.
Orseau, L.; and Lelis, L. H. 2021. Policy-Guided Heuristic
Search with Guarantees. In AAAI Conference on Artificial
Intelligence, 12382–12390.
Papadimitriou, C. H.; and Steiglitz, K. 1998. Combinatorial
Optimization: Algorithms and Complexity. Courier Corpo-
ration.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley Longman
Publishing Co., Inc. ISBN 0201055945.
Sonoda, S.; and Murata, N. 2017. Neural Network with
Unbounded Activation Functions is Universal Approxima-
tor. Applied and Computational Harmonic Analysis, 43(2):
233–268.
Toth, P.; and Vigo, D. 2002. The Vehicle Routing Problem.
SIAM.
Wilkins, D. E. 2014. Practical Planning: Extending the
Classical AI Planning Paradigm. Elsevier.


